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Abstract

Prior information for the stationary sea surface topography (SST) may be
needed in altimetric solutions that intend to simultaneously improve the
gravity field and determine the SST. For this purpose the oceanographically
derived SST estimates are represented by a spherical harmonic expansion.
The spherical harmonic coefficients are computed from a least squares
adjustment of the data covering the majority of the oceanic regions of the
world. Several tests are made to determine the optimum maximum degree of
solution and the best configuration of the geometry of the data in order to
obtain a solution that fits the data and also provides a good spectral
representation of the SST.
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Introduction.

One of the main problems in marine geodesy is the determination of the
geoid from the sea surface heights that are computed from satellite altimetric
observations. In order to do that independent estimates of the stationary and
time wvariable sea surface topography (SST) need to be provided. Time
variations of SST can be computed in a rather straightforward way by
analysing the overlapping tracks during the repeat era of a satellite altimetric
mission (Cheney et al., 1983). These variations can then be removed from the
sea surface heights. Alternatively they can be considered as noise during the
processing of altimeter data with traditional crossover techniques and
therefore be filtered out from the sea surface heights (e.g. Rowlands, 1981).
Estimates of the stationary SST, on the other hand, that has an expected total
variation of about 2 meters, can be provided by oceanographic methods (e.g.
Levitus, 1982) using observations of ocean temperature, salinity and oxygen
content and imposing geostrophic conditions in solving the equations of motion
for the oceans. ’

Stationary SST can also be computed by traditional geodetic techniques.
In one such determination (Engelis, 1985) geoid undulations computed from a
low degree satellite derived gravity field, are subtracted from the sea surface
heights computed from altimetry. Because of the errors in the determination
of the s=satellite derived gravity field only the long wavelength part of these
reduced sea surface heights can represent the stationary SST with some
degree of confidence. In order to determine this long wavelength SST an
harmonic analysis of the reduced heights is required. Then a low pass
filtering is performed to retain only the low degree coefficients that have a
favourable signal to noise ratio.

Recently there have been attempts to simultaneously determine the long
wavelength SST and improve the gravity field of the earth. One such method
incorporates a low degree (ng,, = 10) spherical harmonic model into a general
dynamic solution for a low degree (np,x = 50) gravity field of the earth,
currently being attempted at NASA Goddard Space Flight Center. In such a
solution observations to geodetic satellites, altimeter data and terrestrial
gravity anomalies are used. In an alternative method being proposed by
Engelis (1987), altimeter observations are used in a combined solution to

reduce the radial orbit error, improve the geoid and determine the stationary
SST.

The effectiveness of all geodetic techniques to determine the SST is
subject to the accurate representation of the spectral content of the SST
itself, or, in other words, subject to the correct implementation of the
spherical harmonic models that are used. Particularly for the last method,
where apriori SST information by wavelength (i.e. degree wvariances) is
needed, it is important that some estimates of the spectral behavior of SST is
available. Such estimates have been provided in the past by Engelis (1985)
who has used the Levitus data to estimate harmonic coefficients and their

‘degree variances. In that estimation the orthogonality principle assuming data

all over the sphere was used. In the present investigation this determination
is reexamined since the SST is not a complete function on the sphere but is
only defined in oceanic areas. Therefore, consideration of the SST as a global
function introduces problems, the most important of which 1is that, the
resulting harmonic coefficients have a lower power since they are forced to



also fit the land regions which are filled with SST values that are traditionally
considered to be zeroces. In the present analysis the Levitus data, only in the
ocean areas, will be used to determine spherical harmonic coefficients. These
coefficients can provide, hopefully, the best reference values needed for the
combined solutions. A more general purpose of this analysis is to examine the
problems involved with the spectral decomposition of data that are not globally
distributed on the sphere. .

The Levitus SST.

In oceanographic methods to determine the stationary SST, temperature,
salinity and disolved oxygen content of the oceans are used to determine
pressure and water density, which in turn are used to solve the geostrophic
equations of motion in the oceans. In order to do that a reference
equipotential surface (surface of no motion), which ideally can be the geoid,
must be used. Due to the inability to use an estimate of the geoid, a deep
surface is defined to be a surface of no motion. Then solution of the
equations of motion provides the mean annual anomaly of the geopotential
thickness of the layer between that surface and the ocean surface.

The most recent determination of such a dynamic SST is made by Levitus
(1982) who used data from the National Oceanographic Data Center. A first
analysis of the data, made by Levitus, indicated several problems. The most
important problem was regional biases in the data and lack of data in
extended regions. Moreover there were temporal representation problems in
the data since observations were not synoptic but scattered with respect to
time (with the exception of a few limited areas) and so, the results cannot in a
strict sense be considered a true long term average.

After the initial stability and statistical checks to eliminate spurious
observations, averages of data in 1°x1° blocks were created, In order to
overcome biases and lack of data a smoothing operation was performed. This
smoothing consisted of a weighted average operation in which a Gaussian type
filter was used as a weighting operator. The radii of the Gaussian filter
ranged from 1540 km to 770 km depending on the region. As a result, any
signal with wavelengths less than 800 km was eliminated while wavelengths
between 800 km and 3000 km were affected with changes in the amplitudes of
the signal. For example wavelengths of 1000 km had a reduction in amplitude
of at least 50% (Levitus, 1982, Figure 11). The minimum wavelengths of 800 km
roughly correspond to a maximum degree 20 in a spherical harmonic expansion.
Levitus considers that the resulting large scale features are representative of
the real ocean, although it is expected that some local differences can occur
because of interannual wvariability. This smoothed data set was used to
compute the annual mean anomaly of geopotential thickness of several layers
corresponding to different deep surfaces considered to be surfaces of no
motion,

The dynamic topography that is used in the present analysis is the one
with respect to a 2250 db surface. This data set consists of 33856 1°x1° mean
values in the ocean areas of the world. Their spatial distribution is shown in
Figure 1 of Appendix A. A first analysis of this data set has indicated some
outliers in the west equatorial region of the Pacific ocean. After these values
are rejected, the weighted mean value of the SST set is computed to be 2.02




meters. This mean is removed, since for geodetic applications any such terms
are absorbed by the mean earth ellipsoid that is used to reference the geoid.
Analysis of the centered quantities indicates that the SST estimates range
from -1.40 meters at the southernmost latitudes close to Antartica, to about 1
meter in the northern Pacific. A notable exception to the above range has
been found in the Mediterrannean sea where there is a sparse coverage of 82
1°x1* wvalues all of them having magnitudes smaller than -3 meters.
Additionally in the oceanic regions above 70° as well as in the region between
Greenland and Scandinavia there are 3134 SST estimates with a mean value of
~-1.80 meters and a very small, almost latitudinal variation. These values differ
from neighboring values in the North Atlantic region as well as values in the
Northern Pacific by as much as 1 meter.

This original data set with the mean value removed is the one that was
used in Engelis (1985). In expanding the SST into spherical harmonics one is
interested in determining a set of coefficients that best represent the oceanic
regions within latitude limits that are also attained by satellite altimetry.
Therefore, it was decided (Rapp, 1985, Appendix B) to reject all the 3134
values in the northernmost latitudes. Furthermore, the Levitus estimates in
the Mediterrannean sea were replaced by estimates from a map by Lisitzin
(Lisitzin 1974, p.153) that was given with respect to a 4000 db surface. In
order to put the Lisitzin estimates into the same reference system as the
Levitus sei, their mean value was removed and the global mean value of the
Levitus set was added.

In the present investigation four sets of SST estimates are used in order
to see what is the effect of particular regions on the global analysis of SST.
These sets are the following.

1. Original Levitus data set centered around its mean value of 2.02 meters
and containing 33856 estimates with an RMS wvalue of 80.3 cm (SETI1).

2. Same as SET1 but augmented by the Lisitzin estimates in the
Mediterrannean sea, centered around its mean value of 2.02 meters and
containing 34056 estimates with an RMS value of 78.8 ¢m (SETZ2).

3. Same as SET2 but without the 3134 estimates in the northernmost
latitudes. There is a total of 30922 estimates with their mean wvalue of
2.01 meters removed and an RMS value of 62.4 cm (SET3).

4, Same as SET3 but with no data in the Mediterrannean sea. There are
30640 estimates with their mean value of 2.03 meters removed and an
RMS wvalue of 62.4 cm (SET4).

The spatial distribution of all four data sets is shown in Pigures 1-4 of
Appendix A.




Harmonic Analysis of a Function on a Sphere.

A square integrable analytical function f(4,A) defined ‘on a unit sphere
-n/2<¢<n/2 and O04A42r can be expanded in a series of surface spherical
harmonics

@ 4 1 e - '
f(e,A) = T I LC,Y, (&,1) (1)
220 m=o a=o Zm Zm
where
. Com if a=0
Ctm = 15,,  if a=l (2)
and
_ ﬁgm(sin¢)cosmk if a=0
Yy, = iz . . . (3)
Am Ppn(siné)sinmA if a=1

(-ng, égm are the fully normalized spherical harmonic coefficienis of the
function f(¢,A) and Pg,(siné) are the fully normalized associated Legendre
functions of the first kind, such that

1l [ wagd _ {1 if 2=i, m=j, a=b
4z I Y2"'Yijd‘7 - {0 otherwise (4)

Using the orthogonality principle that is expressed by equation (4) the
spherical harmonic coefficients can be derived from

Chm = %; f £(6,)) Y3n(,\)do (5)

These coefficients are independent and they form a basis of the function on
the sphere. In terms of linear algebra, equation (1) is the spectral
decomposition of the function f(4,A), Yp, are the eigenfunctions and Cy, are
the eigenvalues of the function.

When discrete point realizations of the function are given on the sphere
in an equiangular gridded form, with grid intervals 4¢, A\ along latitude and
longitude respectively, then the upper limit of equation (1) changes from
infinity to some maximum degree 4£_,, that corresponds to the Nyquist
frequency of the sampled set and is equal to n/4X. Furthermore, equation (5)
becomes

- 1 Ltz 2L—1 v
Cin= 3z I I f(4A)T3.(000 )0y (6)

i=o j=0
where o;; is the finite surface element and is equal to

dij = Ak(sin(¢i+A¢)—sin¢i) (7)



In equation (6), L is the number of gridded samples along a parallel and is
equal to £,,,. The orthogonality principle is still valid and independent
coefficients can be obtained up to £,,,. These coefficients are insensitive to
the maximum degree of solution as long as this is smaller than £,,, since
folding of frequencies is prevented by the orthogonality of the harmonics.
Attempts to determine coefficients of higher degrees result into aliased
estimates that are fully correlated with coefficients of degrees lower than
2

max*

When the function f($,A) is sampled in the form of equiangular area means,
things become a little more complicated. Equation (1) becomes

L 2 1 -
1 ax a a
f JA:) = == Cc Yindo 8
(¢i J) o'ij 220 mgo aEO £ Q'I 1 ( )

or, in an expanded form

1 Emax £ - -
T(oi,h5) = == 1 I (CpnlCutSy,IS,) 1Py (9)

ij £=o0 m=o

where IC,, IS, IPg, are the integrated cosines and sines of order m and the
integrated associated Legendre functions, respectively. The maximum degree
of expansion is again specified by the relationship £,,, = n/AAX where A\ is
now the size of the block.

The problem in expanding area means into spherical harmonics is that the
orthogonality principle is not valid anymore. As a matter of fact deviations
from the orthogonality principle are a function of the block size. These
deviations tend to zero as the block size tends to zero. For a given block
size deviations from the orthogonality principle increase with increasing
degree. Approximations to the orthogonality principle and therefore estimates
of the spherical harmonic coefficients can be obtained by introducing the so
called desmoothing factors {Colombo, 1981, Rapp, 1986). Then equation (5)
becomes

T fea [ A;)d 10
Inq, izo J_Eo (32 ) 3 Im(®i,1;)do (10)

=a
Cﬂm =
O',J

where qp can be either the Pellinen operator or an optimum quadrature weight
defined by Colombo (1981). With the incorporation of the desmoothing factor
errors due to the finite size of the block and errors arising from the
dampening of higher frequencies because of the averaging to generate the
mean values, are reduced.

Spherical harmonic coefficients computed using equation (10) are not
independent any more due to the approximations involved in the equation
itself. Their correlations though are minimal. For the efficient evaluation of

(10) optimum procedures have been developed and can be found in Rapp
(1986).



Spherical harmonic coefficients representing the square integrable
analytical function f(¢,A) can also be computed by a least squares adjustment
of the sampled values of the function. "Equations (1) or (8) can be used for
that purpose as observation equations depending on whether the sampling is
in a form of point values or area means. In a least squares solution
individual data errors can be taken into account for weithting purposes, or all
weights may be set equal to one. In the latter case and for point values, the
formulation and the results are identical to the ones of equation (6} since the
orthogonality principle is valid and so the normal matrix becomes diagonal.
When mean values are used, with equal weights, the normal matrix is
dominantly diagonal and the results and formulation are very similiar to the
ones of equation (10) but not identical. In either formulation the coefficients
can be considered as independent and insensitive to the maximum degree of
solution. Furthermore, when the data sampling implies a Nyquist frequency
that is greater that the maximum frequency existing in the function data
{when the function is band limited), all coefficients corresponding to
frequencies between these two frequencies will be effectively zero. Obviously,
after the coefficients are estimated, a subset of them can be used to compute
a long wavelength approximation of the function (i.e. a low pass filtering) or,
equally well, high degree variations (i.e. a high pass filtering). Finally the
spectrum of the function can be computed by computing the degree variances
as follows

2
2 _ =2 -2
g, = mgo (Cim + Szm)

(11)

When the function f(¢,A) is not globally defined on the sphere but only on
a portion of it, then it is not analytical on the sphere anymore since its
spatial derivatives are discontinuous on the boundaries. Consequently it
cannot be expanded into .a series of surface spherical harmonics that are
orthogonal, since the orthogonality principle is not wvalid anymore. Ideally,
such a function can be spectrally decomposed, if one is able to compute the
eigenfunctions and eigenvalues of the function over the domain where the
function is defined. When the boundaries though are variable, as it happens
in most geodetic applications for which data are not sampled globally (e.g.
satellite altimetry ) such a computation becomes nearly impossible.
Furthermore, it has been traditional for geodesists to work with spherical
harmonics since all the geodetic quantities of interest can be analysed into
spherical harmonics.

Based on the above, one can expand f(¢,A) into spherical harmonics, only
with the understanding that such an expansion is nothing else than a
polynomial fit, and that the only property of the harmonic coefficients is that
they reproduce the function. To compute the coefficients of equations (1) or
{9), depending on the nature of the available sampling, one cannot use

equations (6) or (10) anymore. The only way these coefficients can be
computed is through a least squares fit of the data using (1) or (9) as
observation equations. A similiar situation arises when a function that is

globally defined on the sphere is not globally sampled (e.g. terrestrial gravity
anomalies).

There are several issues that need to be addressed during such a
computation. First of all and most important, the coefficients themselves are




not independent but correlated. This is expected since the normal matrix is
not diagonal or even dominantly diagonal. Therefore, no long wavelength
approximation to the function can be computed and equation (11) cannot really
be used to compute the spectrum. Furthermore, the Nyquist frequency cannot
be defined, based on the sampling of the function, in the sense £,,, = =/4A
since the discontinuities at the boundaries introduce artificial energies at
frequencies that are functions of the variability of the boundaries. This
effect is the so called Gibbs phenomenon, which is very well known in the
theory of Fourier series. So even if the function is band limited with a
maximum frequency £ less than the maximum frequency £,,x that is implied by
the data, if one tries to solve up to 2,,« then the coefficients between £ and
2hax Wwill not be zero but will have substantial magnitudes. Furthermore,
considerable folding of these frequencies occurs so that to also affect the
coefficients of degrees lower than £, As it will be seen later on, the greater
the maximum degree of the solution is, the larger the folding and therefore
the larger the coefficients become. Of course the correlations between these
coefficients aldo increase in such a way that, when they are used to
reproduce the function, they provide a perfect fit.

From this discussion it is obvious that the computed coefficients are not
unique but they depend on the maximum degree of solution. So, if a band
limited function is analyzed, or smoothing has been applied to the data, it is
important that some prior information about the effective minimum wavelengths
(and therefore the maximum degree of solution) be available.

In analyzing an incomplete data set on the sphere, either because of
definition or because of incomplete sampling, the geometry of the data
distribution is very important, and is basically the factor for the deviation of
the harmonics from orthogonality. As will be seen later on, a very small
change in the data distribution can result in substantial changes in the
computed coefficients even when the same set of coefficients is solved for (i.e.
same maximum degree of solution). Unfortunately there is no known method
that can estimate what the effect of a gap in the data on the computed

coefficients can be. The only information that can be obtained is how a
particular gap of data affects the correlations of the coefficients. This can be
done by simply computing the normal matrix for the gap. Doing that

repeatedly, for several gaps, one can possibly identify areas to which a
solution is very sensitive and areas that contribute a little to the solution.

Determination of the SST Spherical Harmonic Coefficients.

In determining the Levitus SST harmonic coefficients Engelis (1985) has
adopted the definition that the SST is a global function that takes wvalues both
on land and oceans, with the values on land being identically equal to zero.
In that definition it was required that the mean value of the SST is zero as
sampled globally in the oceanic areas of the world. The SST estimates that
were used in such an ivestigation were the original Levitus wvalues that
correspond to SETI. These estimates were considered to be point values.
Then, spherical harmonic coefficients were computed using equation (6). The
same analysis was repeated in Rapp (1985) where though SET3 was used and
the values were considered to be mean values. Equation (10) was then used
to compute the SST coefficients. In both solutions the results were practically
insensitive to the maximum degree of expansion. The difference between the



two sets of coefficients was found to be on the order of millimeters for most
of the coefficients with the exception of the first and second degree terms
that differ by a couple of centimeters. Furthermore the cumulative power
computed by either solution (up to £,,, = 36) was on the order of 40 cm
which is substantially lower than the RMS values of the Levitus sets SET1 and
SET3 that are on the order of 80.3 and 62.4 cm respectively. This substantial
reduction was due to the smoothing of the derived fields that were forced to
also fit the zeroes on land. For the same reason the RMS fit of these fields
to the data was only on the order of 10-20 cm.

The same type of solution is presently repeated by applying a least
squares fit to the Levitus data set augmented by zerces on land. Several
solutions up to different maximum harmonic degrees (6,10,20,36) have been
made for all the four sets of SST described previously. In all the solutions
equal weights were used. Equation (9) was used to form the observation
equations. The conclusions that can be drawn from the adjustment results are
identical to the ones drawn from the quadratures solutions described above.
Again there is no variation of the coefficients among solutions with different
2,.<x for any of the data sets. Furthermore solutions using SET1 and SET2 as
well as solutions using SET3 and SET4 are almost identical (differences on the
order of millimeters). This level of differences was also found in comparing
these solutions with the corresponding quadratures solutions. In any of these
least squares fits the standard deviation of each individual coefficient is 2 cm
while the correlations were found to be indeed negligible. Any solution up to
degree 36 has an RMS power of 40 cm and an RMS fit to the Levitus data of
11 cm. Solutions up to degree 10, on the other hand, have an RMS fit of 20
cm and an RMS power of 37 cm.

Solutions for the SST harmonic coefficients have also been made by
considering the SST to be defined only in the oceanic regions. In order to
examine the sensitivity of the coefficients to the choice of the maximum
harmonic degree and the geometry of the data distribution, solutions up to 8§,
10, 12, 20 and 36 were made using all the four data sets. In establishing
which set of coefficients is the best, a combination of the following criteria
was used.

1. RMS fit to the Levitus data to be small.

2. RMS wvalue implied by the cumulative degree variances to be close to
the RMS value of the Levitus SST.

3. Zero degree coefficient to be very close to zero.
4, Estimated standard deviations of the coefficients to be small.
5. The condition number of the normal matrix to be small.

This set of criteria was devised as an empirical alternative way to choose the
set with the smallest possible correlations since examining the normal matrices
for all these sets was found to be impractical. In particular, the combination
of the first and second criteria can give a first indication about the level of
correlations of coefficients. The third criterion can support the first two.
Indeed, by definition the zero degree term has to be zero, so any deviation
from zero indicates the level of correlation of the zero degree term with the




other coefficients. Finally the fourth criterion is useless by itself but if
combined with the other criteria and particularly with the last one it can give
one further input on the choice of the best set of coefficients._

Examining all the different solutions it was found that the solution up to
harmonic degree 10 using SET3 performs the best, since it better satisfies all
the criteria. More specifically the RMS discrepancy from SET3 is 7 cm, the
RMS value implied by the degree variances is 62.8 cm (closest to the RMS
value of SST which is 62.4 cm) and the zero degree term is -4 cm. The
standard deviations of the coefficients (not scaled by the aposteriori variance
of unit weight) range from 2 to 30 cm and the condition number is on the
order of 5000. These accuracy estimates are poorer than the corresponding
ones from solutions to a smaller maximum degree (i.e. 8) but only marginally.
On the contrary they are much smaller than the standard deviations of higher
degree solutions.

The performance of the solutions up to harmonic degree 10 using SET1
and SET2 is almost comparable. Indeed the first two criteria are satisfied
since the RMS fits to the corresponding data are on the order of 9 cm and
their cumulative power reaches 80 cm. The other criteria though are not
satisfied as well since the zero degree terms of the two solutions are -25 cm
and -20 cm respectively and the standard deviations of all the coefficients are
somehow larger than those of the SET3 solution. The reason for this is that
the systematically lower values at latitudes greater than 70° introduce a step
discontinuity in the data. This discontinuity affects primarily the zonals and
particularly the second degree zonal that is on the order of -55 cm as
compared to -28 cm of the SET3 solution. - The coefficients computed from
SET4 perform the worse. Indeed some of these coefficients have magnitudes
greater than 50 cm giving a cumulative power in excess of 1 meter. Still, the
RMS discrepancy from the SET4 data set is 7 cm. This indicates that there
are high correlations between the coefficients and that the solution is
extremely sensitive to the geometry of the data distribution. Indeed a small
change of SET3 (removal of 282 wvalues in the Mediterrannean) makes the
solution (i.e. SET4) completely unreliable.

For all the data sets, any solution with a maximum harmonic degree
greater than 10 gives coefficients that are completely unreliable, since they
reach magnitudes close to 1 meter and standard deviations of several meters,
while the condition numbers increase dramatically. In all these solutions the
RMS discrepancies from the Levitus data reduce with increasing £,,, to reach
a value of 8 mm for a solution up to degree 36, For this particular solution
the cumulative power is on the order of 8 meters, the standard deviations are
on the order of 10-15 meters and the condition number is on the order of 108,
Even a solution up to degree 12, although it gives an RMS fit of 6 cm to the
Levitus data, it has a cumulative power of 1.35 m and individual standard
deviations on the order of 50 cm.

The coefficients of the ocean solution up to degree 10 and based on SET3
are shown in Table 1 together with their by degree and cumulative amplitudes.
Additional sets that are given for comparison are the ones of the global
golution up to degree 10 (Table 2), and the ocean solution up to degree 36
(Table 3), always based on SET3. All these Tables can be found in Appendix
B. " Comparing the degree amplitudes between the oceanic and global solutions
to degree 10 we observe a higher energy in the oceanic solution, which was




expected, but also a similar decay in energy with increasing degree. Such a
behavior and the fact that many of the SST features above degree 10 have
been filtered out by Levitus suggest that the spectral content of the SST
could be approximated by the estimates of Table 1 reasonably well.

The three sets of coefficients given in the Tables as well as the
coefficients of the global SET3 solution to £,,, = 36, have been used to
generate SST estimates on a 1°x1° grid. Contour maps of these estimates
based on a 5°x5° grid were then generated and are shown in Figures 6-9 of
Appendix A, while a contour map of the Levitus set (SET3) also based on a
5°x5° is shown in Figure 5. Examining Figures 6 and 7, that portray the SST
from the ocean and global solutions up to degree 10 respectively, it is seen
that the primary difference is that the former is able to show the broad
features of the Gulf stream in a much better way than the latter. Examining
Figures 8 and 9 that portray the SST features to degree 36 we can see that
all features of the SST are almost identical and have an excellent agreement to
the ones of Figure 5. In a more detailed visual examination the SST in the
Gulf stream region from the SET3 data set and the four solutions has been
plotted and" is shown in Figures 10 through 14 of Appendix. Now one can
clearly see the inadequacy of the global solutions to reproduce the SST
features faithfully, although the global solution to degree 36 provides a good
qualitative approximation. The ocean only solution up to degree 36 is identical
to the original data.

In order to create Figures 8 and 13 the SST values on land were replaced
by the corresponding values of the global solution to £¢,,, = 36, since the land

values of the ocean solution to £,,, = 36 are on the order of 20 meters and
no contouring could be made. The same values have been used to plot the
Levitus maps in Figures 5 and 10. Such a substitution may have created
small distortions close tc the coastlines which though are expected to be
minor. In any case the values on land and close to the coastlines are
meaningless. |

Conclusions.

From the analysis made so far it is understood that the determination of
spherical harmonics from the oceanic Levitus data set is very sensitive to a
number of factors. It is seen 'that high correlations exist between the
recovered coefficients that makes them completely unreliable, although they
provide a good fit to the data. The best set of coefficients among solutions
has been identified (SET3 ocean solution to ¢,,, = 10) based on certain
criteria. Additional solutions which are as . good (SET1 and SET2 ocean
solutions) have been found but have not been chosen because they also
reflect the data in the north polar region and therefore they do not provide
an equally good fit to the ocean areas also attained by altimetry, as the SETS3
solution does. The experience obtained from this investigation indicates that
although the chosen solution is the best among solutions that have been
attempted it may very well turn to be suboptimum. As a matter of fact, it
may be possible that some other slightly different configuration of the data
and/or solution may very well give better results. Based on the above, one
could even be inclined to use the coefficients computed from the global
solutions since such solutions although, not giving very good fits, have very
well established properties.
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Appendix B

Spherical Harmonic Coefficients from Different Solutions of the Levitus SST
Estimates. Units are in meters.
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TABLE

MAXIMUM DEGREE OF EXPANSICN

NUMBER OF UNKNOWNS

RECIPROCAL CONDITION NUMBER

DETERMINANT

NUMBER OF SST VALUES USED

DEGREES OF FREEDOM
RMS FIT TO LEVITUS DATA

CNM

-0.0406
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-0.1766
-0.2803
-0.0452
0.0261
0.2663
-0.0194
0.0507
-0.0391
0.1467
0.0123
0.0201
0.0010
-0.0432
0.1242
0.0008
-0.0129
-0.0268
-0.0337
-0.0114
0.1536
~0.0083
-0.0824
-0.0199
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0.0012
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121
0.593E-05
1.633*10.0**505

30922
30801
0.07M

-OCEAN SOLUTION BASED ON LEVITUS SST (SET3)

SN

0.0406
0.2220

0.2854

0.2787

0.1922

0.2064

0.2294

0.1685

0.1098

SN(CUM)
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TABLE

GLOBAL SOLUTION BASED ON LEVITUS SST (SET3)

MAXIMUM DEGREE OF EXPANSION

NUMBER OF UNKNOWNS

RECIPROCAL CONDITICN NUMBER

DETERMINANT

NUMBER OF SST VALUES USED
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RMS FIT TO LEVITUS DATA

M
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-0.0037
-0.0087
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0.1220
~0.0078
-0.0303
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0.0120
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0.0318
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SNM

0.0000
0.0000
0.0239
0.0000
0.0184
0.0275
0.0000
-0.0169
-0.0205
0.0020
0.0000
0.0092
0.0084
0.0234
-0.0173
0.0000
0.0153
0.0456
0.0202
0.0047
0.0033
0.0000
-0.0145
-0.0039
-0.0252
0.0032
0.0000
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0.0000
0.0185
0.0037
0.0228
0.0028
-0.0065
0.0139
-0.0010
0.0000
-0.0333
-0.0080

121
0.948E-01
3.353*10.0**575

64800
64679
0.15M

SN

0.0014
0.1827

0.2224

0.0974
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0.0673

0.1333

0.1002

0.0710

SN(CUM)
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0.1827

0.2878

0.3039
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0.0065
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TABLE 3
OCEAN SOLUTION BASED ON LEVITUS SST (SET3)

MAXIMUM DEGREE OF EXPANSION = 36
NUMBER OF UNKNOWNS = 1369
RECIPROCAL CONDITION NUMBER = 0.134E-08
DETERMINANT = 4.054*10.0**4635
NUMBER OF SST VALUES USED = 301153
DEGREES OF FREEDOM = 28784
RMS FIT TO LEVITUS DATA = 0.01M
M CNM SNM SN SN (CUM)
0 0.4001 0.0000 0.4001 0.4001
0 0.1877 0.0000 0.5910 0.7137
1 0.5125 0.2180
0 -0.8731 0.0000 1.1202 1.3283
1 0.2576 0.3219
2 0.5136 0.2426
0 ~-0.2745 0.0000 1.0768 1.7099
1 ~0.6562 0.0622
2 0.5007 0.2407
3 0.139%0 0.5673
0 0.2345 .0.0000 1.3236 2.1623
1 -0.7600 -0.2719
2 -0.2409 -0.2406
3 0.3914 0.4806
4 -0.0454 0.7370
0 0.5592 0.0000 1.4382 2.5968
1 -0.1638 -0.0862
2 -0.8214 -0.6589
3 0.0373 -0.1841
4 -0.01893 0.5244
5 0.0542 0.5468
0 0.4162 0.0000 1.4254 2.9624
1 0.6958 0.1800
2 -0.5612 -0.4501
3 -0.4293 -0.6732
4 -0.1661 -0.0%907
5 -0.0503 0.3137
6 0.0518 0.2179
0 -0.1648 0.0000 1.2118 3.2007
1 0.7265 0.2884
2 0.2571 0.2226
3 -0.2878 -0.4265
4 -0.2723 -0.4710
5 -0.1121 -0.1273
6 -0.1660 0.2696
7 -0.1561 -0.0255
0 -0.2928 0.0000 1.1260 3.3930
b 0.2805 -0.0760 '
2 0.5813 0.3121
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0.
=0.

0.

0837
0954
0331
0247
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2158
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1281
1157
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1672
0331
1213
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1185
1696
1137
0517
2827
0207
0746
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0488

1773

0220
2388
2535
0712
0541
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0430
0344

2445
3974
0178
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0276
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4752
0126
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1428
0543
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2417
i82s
0708
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0.0998
-0.4279
0.0079
0.1606
-0.0902
0.0000
-0.0399
0.0838
0.4949
-0.3580
-0.5554
-0.2888
0.093%
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0.0640
0.0000
-0.3587
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0.0414
-0.4036
-0.3418
-0.1467
-0,0531
0.0492
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0.0000
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-0.2856
0.1834
0.3351
-0.0478
-0.1418
-0.1409
-0.1739
-0.0254
-0.0248
0.0255
0.0000
0.0672
-0.1147
-0.1500
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0.0824
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0.0000
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3.7085
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-0.2012
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0.2248
0.4069
0.3853
0.0837
-0.2872
-0.0886
0.1667
-0.0156
-0.1083
0.4128
0.0527
-0.2127
-0.1377
0.9291
0.3775
-0.3550
-0.1938
0.2094
0.0596
0.1954
0.0950
-0.1285
-0.1578
0.1658
-0.2397
0.3792
0.2557
-0.2179
-0.1642
-0.0231
0.1095
0.8762
0.0390
-0.2581
0.1009
-0.2689
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- 0.0068

-0.0348
-0.1641
0.0889
-0.0261
0.0000
-0.1921
0.1863
0.7613
0.0627
-0.2956
-0.0425
-0.2020
-0.0513
0.1067
0.0308
-0.3348
0.0788
0.2180
-0.0102
0.0000
-0.1638
-0.2195
0.5732
0.6615
-0.2367
-0.3320
-0.3256
-0.3603
0.1460
0.2967
-0.2750
-0.2692
0.2832
0.0514
0.0382
0.0000
0.0953
-0.6428
-0.3851
0.5918
0.3261
-0.3998
-0.2185
-0.4780
-0.0673
0.4254
0.1705
-0.3115
0.0518
0.0050
-0.1460
0.0295
0.0000
0.1793
0.0258
-1.0306
-0.4557
0.4943

1.4896

1.8346

1.8638

1.8368

4.3006

4.6755

5.0334

5.3581
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-0.2565
0.2932
0.3655

-0.2050
0.1640

-0.0972

-0.0107
0.35585

-0.1302

-0.1085

-0.1207
0.0193

~-0.6225

0.3064
0.3324
-0.2018
-0.0111
-0.0045
-0.7297
-0.1099
0.5868%
0.1866
0.0412
0.2244
-0.2985
0.0776
0.0177
0.0972
-0.0402
-0.1542
0.0037
-0.5070
-0.4173
-0.0305
g.1781
-0.1571
0.4320
-0.4774
-0.5405
0.1165
0.4288
0.0372
0.3434
-0.1397
-0.2519
-0.1024
0.1387
0.2763
-0.1296
-0.0447
-0.0282
-0.0154
-0.2340
-0.4790
0.0927
-0.2966
0.3525
0.1592
-0.3299
~-0.3663
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~-0.0833

-0.0427
~0.1353
-0-1947
0.1408
0.4322
0.0441
-0.0294

-0.0130

-0.2368
-0.1579
-0.0853
0.0000
-0.1169
0.4849
-0.5177
-1.0085
-0.0263
0.2449
0.1858
0.2296
0.1515
-0.1700
0.1535%5
0.2054
0.1253
0.0027
~-0.0849
-0.1960
-0.1821
-0.1859
0.0000
-0.5446
0.4559
0.2104
-0.5355

-0.4193

0.2101
0.4441
0.2386
0.5291
0.0261
-0.2393
-0.0169
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0.0635
0.0111
0.1004
-0.2036
~0.2466
-0.1630
0.0000
-0.2969
-0.1831
0.2876
0.2657
-0.0315
0.0284
0.5364
0.1156

1.9150

1.8826

1.5007

5.6900

5.9934

6.1784
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0.0745
0.2360
0.0684
-0.1757
-0.2916
-0.0028
0.3434
0.0573
-0.0173
0.1269
-0.0197
-0.0506
0.3113
-0.3128
-0.0330
-0.2236
-0.1674
0.2559
0.1617
-0.2455
-0.1385
0.0368%
0.1215
0.0023
0.0042
~0.0649
-0.2765
0.0871
0.0531
0.0201
0.2185
0.1767
0.0383
-0.3011
0.2021
0.3493
-0.1659
-0.0438
-0.3548
-0.1164
0.1585
0.1650
-0.1728
0.0350
0.0187
-0.1310
-0.1998
0.3242
-0.1758
-0.1564
-0.0982
-0.0320
0.1464
0.2688
0.1511
0.0990
-0.2809
-0.3785
0.4915
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0.2489
0.4198
-0.1674
-0.1649
-0.1657

© 0.1078

-0.0265
0.2648
0.0522

-0.2859

-0.2238

-0.0805
0.0000
0.1982

-0.0442

-0.1167
0.1842
0.4714
0.0630
0.4334
0.1342

-0.3629
0.2896
0.1661
0.0585

-0.2318
0.0004
0.0027
0.0736
0.2914

-0.1468

-0.2296

-0.1771

-0.0153
0.0000
0.4811
0.3100
0.0245

-0.3037
0.3600
0.1537
0.2818
0.2267

-0.5124

-0.2220
0.1917
0.3783

-0.0244

-0.1162
0.0940

-0.1267
0.1015
0.1043

-0.0724

-0.1141

-0.1479

-0.0147
0.0000
0.1171
0.3714

1.2860

1.4688

1.5811

6.3108

6.4795

6.6696




0.1466
0.0901
-0.1810
-0.1341
-0.2452
0.2589
-0.0553
0.1196
-0.0468
-0.1149
-0.5706
0.2535
0.2228
-0.1771
-0.1327
-0.0848
0.0776
0.0855
0.2091
0.1382
0.1117
0.2486
-0.6420
0.1597
0.1965
0.0956
-0.0469
0.2995
-0.2988
0.0025
-0.0825
0.1499
-0.0727
-0.0736
-0.5923
-0.1742
0.3892
-0.0263
-0.0424
-0.0240
0.0722
-0.0665
0.0156
0.1968
0.1304
0.0680
0.5157
-0.2138
-0.1969
0.1790
0.0627
-0.2004
0.4424
0.1613
-0.1657
-0.2567
0.0044
-0.1139
-0.1431
-0.2887
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0.4822
-0.4813
-0.2101
-0.0585

0.159%4¢
0.2051
-0.2085
-0.3113
-0.0267
0.3894
0.1943
-0.1839
0.1156
-0.0941
-0.2160
0.0515
0.1527
0.0779
-0.0850
-0.0827
-0.0383
0.0000
-0.0801
-0.2219
0.5273
-0.0175
-0.4681
-0.4444
0.0148
0.1241
0.0055
0.0581
0.0280
0.1262
0.2163
-0.2858
0.0256
0.0348
-0.2438
-0.2021
0.1649
0.2193
0.0473
-0.0472
0.0048
-0.0381
0.0000
-0.0957
-0.4966
-0.0886
0.2963
-0.2646
-0.5225
-0.0811
0.1256
-0.0187
0.2284
0.3629
-0.0570
0.0510

1.5724

1.5372

6.8525

7.0228



-0.3337
0.2658
0.0894
0.0226
0.0822
0.1117

-0.0602

-0.2068
0.0928
0.1769
0.1164
0.0221
0.4152
0.2210

-0.1114
0.0728
0.0168

=0.2602

0.1186
0.4793
-0.0516
~-0.3654
-0.2097
-0.1521
-0.2874
-0.0436
-0.1141
0.2269
0.0800
0.0130
0.0918
0.1329
-0.0135
-0.2260
-0.0997
0.1319
0.1075

" 0.0919

0.0082
0.0388
0.2916
-0.0425
0.1574
~0.0154
-0.1782
-0.2509
0.3366
g0.0828
-0.2870
-0.3403
-0.1134
-0.3522
-0.0006
0.1130
0.3501
0.0912
-0.0565
0.0488
0.0644
0.0161
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-0.3871
-0.1470
0.1171
-0.0725
-0.2033
-0.0001
0.2150
0.0582
-0.0041
0.0499
0.08%6
-0.00s0
0.0000
0.0444
-0.2983
-0.5555
0.2596
0.0637
-0.2616
-0.0431
0.2451
-0.0136
~-0.0096
0.4593
-0.0420
-0.1694
-0.3842
-0.2773
0.1306
0.0596
0.0089
-0.0409
0.1115
0.01s60
-0.0629
0.0290
0.1094
0.0622
0.0260
0.0000
0.0135
0.0866
-0.5089
0.0440
0.1167
0.0329
0.0737
0.3573
0.1286
-0.2360
0.1681
-0.0206
-0.2792
-0.3084
-0.2544
0.1454
0.0919
0.0932
0.0799
0.0381

1.4691

1.3016

7.1748

7.2919




-0.1341
-0.1218
0.0120
0.0663
0.0504
0.0584
0.0177
-0.0362
0.0770
-0.0801
0.1162
-0.0861
-0.0637
-0.2935
0.0615
0.0161
-0.1522
-0.3155
-0.0143
-0.2344
-0.0100
0.1624
0.3693
0.1819

-=0.1472

-0.0051
-0.0005
-0.0063
-0.0733
-0.0205
-0.0015
0.0014
-0.0004
g.0188
0.0236
0.0217
-0.0284
0.0628
-0.2552
0.0341
-0.1302
-0.1254
-0.2003
-0.0165
-0.0991
-0.1163
-0.2020
0.0564
-0.0171
0.0364
0.1558
0.2212
0.2052
-0.1655
-0.0743
-0.0064
-0.0396
-0.0520
0.0255
0.0707
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-0.0209
-0.1206
-0.0228
0.0569
0.1001
0.0413
0.0418
0.0000
0.0570
0.1577
-0.2021
0.1189
0.0497
0.1102
0.1103
0.3161
0.2280
-0.2205
-0.1361
-0.1160
-0.2827
-0.2039
-0.1252
0.1998
0.1124
0.0191
0.1089
0.0525%
-0.0462
-0.1019
-0.0499
0.0176
0.0502
0.0732
0.0304
0.0294
0.0000
0.1218
0.1105
-0.1249
0.2493
0.0638
0.0671
0.0762
0.1655
0.1615
-0.1457
-0.2045
-0.1806
-0.2522
-0.0762
-0.0017
0.2360
0.1651
-0.0575
0.0062
0.0559
-3.0381
~0.0824
-0.02459

1.0513

0.9017

7.3673

7.4222



-0.0174
-0.0186
-0.0151
-0.0036
-0.0032
0.0130
-0.0095
0.1428
-0.2071
-0.1019
-0.1168
-0.2072
-0.1509
0.0220
-0.0605
-0.1313
-0.1065
0.0747
0.1153
0.0888
0.1732
0.0697
0.1023
-0.1228
-0.1224
0.0085
-0.0153
-0.0454
0.0091
0.0978
0.0171
-0.0349
~0.0053
-0.0066
-0.0127
-0.0114
-0.0023
-0.1259
0.1699
-0.0818
-0.1381
-0.0461
-0.2242
-0.1562
0.0130
0.0711
-0.0846
-0.0519
0.0638
0.1207
0.0684
0.1582
0.0145
~0.0093
-0.0815
-0.1024
0.0121
0.0250
-0.0156
-0.0134
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0.0122
-0.0014
0.0370
0.0475
0.0298
0.0098
0.0000
0.1920
0.0990
-0.2037
0.2189
0.1596
0.0359
0.0233
0.0509
0.0288
-0.1365
-0.1507
-0.1127
-0.1966
0.0094
0.0746
0.1920
0.1780
-0.0638
-0.0808
0.0073
-0.0057
-0.0729
0.0024
0.0316
-0.0063
-0.0200
0.0295
0.0260
0.0272
0.0008
0.0000
0.1561
0.1606
-0.2381
0.0074
0.1331
0.0506
-0.0028
0.0189
-0.0269
-0.1370
-0.1228
0.0011
-0.0947
0.0297
0.1107
0.1022
0.1135
-0.0443
-0.0888
-0.0279
0.0129
-0.0336

0.8085 7.4663

0.6787 7.4970




0.0613
0.0355
-0.0358
-0.0102
0.0090
-0.0017
-0.0138
-0.0074
-0.0097
-0.1394
0.0499
0.0572
-0.1326
0.0167
-0.1442
-0.1175
-0.0458
0.1150
0.0077
-0.0118
0.0471
0.0903
0.0074
0.0837

0.0160 -

-0.0545
-0.0598
-0.0555
0.0196
0.0344
0.0142
-0.0150
0.0228
0.0253
-0.0203
-0.0253
0.0106
0.0110
-0.0014
-0.0122
-0.0055
-0.0084
-0.1015
-0.0346
0.0717
-0.0783
0.0438
-0.0630
-0.0556
-0.0699
0.0626
0.0469
0.0176
0.0271
0.0667
-0.0188
0.0061
0.0151
-0.0448
-0.0397
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-0.0085
0.0514
0.0107

~0.0286

-0.0169
0.0183
0.0151
0.0218
0.0015
0.0000
0.0800
0.1696

-0.1417

-0.1075
0.0176
0.0463

-0.0149
0.0164

-0.0052

-0.0883

-0.1125
0.0444
0.0028
0.0205
0.0986
0.0436
0.0233

-0.0398

-0.0639

-0.0204
0.0152
0.0021

-0.0134
0.0347
0.0274

-0.0150

-0.0255

-0.0036
0.0071
0.0059
0.0107
0.0044
0.0000

-0.0010
0.1148

-0.0469

-0.0583
0.0191

-0.0077
0.0091
0.0132

~-0.0191

-0.0817
0.0211
0.0390
0.0175
0.0554
0.0268

-0.0164

0.4894

0.3211

7.5130

7.5199
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0.022¢
0.0002
-0.0152
-0.0093
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0.0172
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-0.0065
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0.0083
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